A three-dimensional ray-driven attenuation, scatter and geometric response correction technique for SPECT in inhomogeneous media.
نویسندگان
چکیده
The qualitative and quantitative accuracy of SPECT images is degraded by physical factors of attenuation, Compton scatter and spatially varying collimator geometric response. This paper presents a 3D ray-tracing technique for modelling attenuation, scatter and geometric response for SPECT imaging in an inhomogeneous attenuating medium. The model is incorporated into a three-dimensional projector-backprojector and used with the maximum-likelihood expectation-maximization algorithm for reconstruction of parallel-beam data. A transmission map is used to define the inhomogeneous attenuating and scattering object being imaged. The attenuation map defines the probability of photon attenuation between the source and the scattering site, the scattering angle at the scattering site and the probability of attenuation of the scattered photon between the scattering site and the detector. The probability of a photon being scattered through a given angle and being detected in the emission energy window is approximated using a Gaussian function. The parameters of this Gaussian function are determined using physical measurements of parallel-beam scatter line spread functions from a non-uniformly attenuating phantom. The 3D ray-tracing scatter projector-backprojector produces the scatter and primary components. Then, a 3D ray-tracing projector-backprojector is used to model the geometric response of the collimator. From Monte Carlo and physical phantom experiments, it is shown that the best results are obtained by simultaneously correcting attenuation, scatter and geometric response, compared with results obtained with only one or two of the three corrections. It is also shown that a 3D scatter model is more accurate than a 2D model. A transmission map is useful for obtaining measurements of attenuation and scatter in SPECT data, which can be used together with a model of the geometric response of the collimator to obtain corrected images with quantitative and diagnostically accurate information.
منابع مشابه
A new approach to scatter correction in SPECT images based on Klein_Nishina equation
Introduction: Scattered photon is one of the main defects that degrade the quality and quantitative accuracy of nuclear medicine images. Accurate estimation of scatter in projection data of SPECT is computationally extremely demanding for activity distribution in uniform and non-uniform dense media. Methods: The objective of this paper is to develop and validate a scatter correction technique ...
متن کاملA model based, anatomy dependent method for ultra-fast creation of primary SPECT projections
Introduction: Monte Carlo (MC) is the most common method for simulating virtual SPECT projections. It is useful for optimizing procedures, evaluating correction algorithms and more recently image reconstruction as a forward projector in iterative algorithms; however, the main drawback of MC is its long run time. We introduced a model based method considering the eff...
متن کاملA New Approach for Scatter Removal and Attenuation Compensation from SPECT/CT Images
Objective(s): In SPECT, the sinogram contains scatter and lack of attenuated counts that degrade the reconstructed image quality and quantity. Many techniques for attenuation and scatter correction have been proposed. An acceptable method of correction is to incorporate effects into an iterative statistical reconstruction. Here, we propose new Maximum Likelihood Expectation Maximiz...
متن کاملA Projector/Backprojector with Slice-to-Slice Blurring for Efficient 3D Scatter Modeling
Scatter correction is an important factor in single photon emission computed tomography (SPECT). Many scatter correction techniques, such as multiple-window subtraction and intrinsic modeling with iterative algorithms, have been under study for many years. Previously, we developed an efficient slice-to-slice blurring technique to model attenuation and system geometric response in a projectorhac...
متن کاملQuantitative SPECT and planar 32P bremsstrahlung imaging for dosimetry purpose –An experimental phantom study
Background: In this study, Quantitative 32P bremsstrahlung planar and SPECT imaging and consequent dose assessment were carried out as a comprehensive phantom study to define an appropriate method for accurate Dosimetry in clinical practice. Materials and Methods: CT, planar and SPECT bremsstrahlung images of Jaszczak phantom containing a known activity of 32P were acquired. In addition, Phanto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 45 11 شماره
صفحات -
تاریخ انتشار 2000